Implications of movement behavior and local density on nonnative fish detection

Joe Parkos¹, Jeff Kline², Joel Trexler¹

¹ Florida International University, Southeast Environmental Research Center, Dept. Biological Sciences

² Everglades National Park, South Florida Natural Resources Center

Information content

Data often comes from a variety of different sources

TATES

What is the information content of data from different sampling methods (active vs. passive)?

How does information content related between methods?

How to interpret discrepancies between methods?

What can we learn from using both types methods simultaneously?

23.000

Approach

Simultaneous use of active and passive sampling methods to sample fish assemblage interior Everglades

Occupancy modeling (PRESENCE) Repeated sampling: detection history used to develop detection prob.'s and refined occupancy estimates

Model by individual sampling method Compare results among species Explore sources of discrepancies

Synthesize information from both methods: **GS Encounter Model** Generates estimates of fish movement speed

Local density and movement \rightarrow Method-specific detections \rightarrow Occupancy

Active sampler (enclosure)

Throw-trap

Each sample (throw): Fish, invertebrates, vegetation 1-m² area

Standardized protocol for clearing trap (bar seine, dip nets)

5-7 replicate throws Randomly located within fixed sites

Passive sampler

Drift-fence

Unbaited, 3-mm wire-mesh minnow-traps

Four 12.m-long, 1.5-m high plastic ground-cloth arms attached to central 2.25m² square

24-hour soak time; 3 replicate arrays

Sampling

From late wet-season to early dry-season (Oct., Dec. Feb.)

Enclosure sampler

throw-trap

Activity samplers

drift-fence solo minnow-traps

Species

Nonnative species often found at low densities (detection issues)

Shift in relative abundance rankings between sampling methods

Hemichromis letourneuxi

Incidence

Modeled occupancy

Naive occupancy difference 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 0.25 0.20 0.15 0.10 0.05 -3 -2 -1 0 -3 Density [Ln (N/m²)] Speed (m/sec)

Parting thoughts

Can you just combine data from different sampling methods?

Differences will arise:

encounter rates with activity samplers low density species

ssues

When is non-detection really absence (enclosure sampler)? When is high catch rate indicate locally high density (activity sampler)?

Many internal and external factors affect movement: how will this affect data from different samplers?

How to interpret non-detections?

No colonization of intervening area

Parting thoughts

Match sampling method to project objectives: Functional understanding of population and assemblage changes? Detection and spread?

Acknowledgements

Field and laboratory personnel of:

South Florida Natural Resources Center (Z. Fratto, E. Crandall) *and* Joel Trexler's research group at FIU (J. Herrin, J. Dummitt, L. Huselid, N. Orozco, S. Schneider, A. Ontkos, J. Martin, J. Gatto, K. Weisenborn, H. Mallikarachchi, S. Bornhoeft)

Coop.Agreements P06AC0026/P11AT10022 P06AC00043/P12AC10563

Lepomis marginatus

